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Representation theory

Method for simplifying analysis of a
problem in systems possessing some
degree of symmetry.

- What is allowed vs. what is not allowed

Keyword : Invariance of the physical properties under
application of symmetry operators.
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Spectroscopy

Use to predict vibration spectroscopic transitions
that can be observed

« Ground state characterized by ¢’
 Excited state characterized by ¢’ - b
» Operator O

* Transition integral :
T=[¢'0¢

* The integrand must be invariant under

application of all symmetry operations
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¢0

IR-Raman active modes
CO,

o0 <0

IR active, change in dipole moment Raman active, change in polarizability
T = ¢0 ¢1 0 41
=)y T=|¢ap
Dipole moment operator Operator for polarizability
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Crystal field

« Ce3* 4f! electronic configuration
* J=|L-S|=5/2

.

‘ -

Free ion i .
Cubic environment

Ground state m——— T_

multiplet === 7_ j #°J &'

AJ=0;+1;-1
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MO-LCAQO

The molecular orbitals of polyatomic species are linear
combinations of atomic orbitals:

Y= Zcz¢i

If the molecule has symmetry,
group theory predicts which atomic orbitals can contribute to each molecular orbital.

>
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MO-LCAQO
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Phase transitions in solids

Phase transitions often take place between phases of different symmetry.
High symmetry phase, Group G,

(I.P)

Low symmetry phase, Group G,

* This is a “spontaneous” symmetry-breaking process.
* Transition are classified as either 1st order (latent heat) or 24 order (or continuous)

A simple example: Paramagnetic -> Ferromagnetic transition
® @ g & “Time-reversal” is lost

* Symmetry under reversal
) /@' /@" /@’ of the electric current
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Landau theory

* Ordering is characterized by a function p(x) that changes at the transition.
*Above T, p,(x) is invariant under all operations of G,

*Below T, p,(x) is invariant under all operations of G,

— 0 _ — nyn _____—— Basis functions of irreducible
0P =P~ Py chi @7 (x) Representation of G,
n l

* At T=T, all the coefficients ¢ vanish
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Landau theory (2)

@ is invariant under operations of G, each order of the expansion can be written
is given by some polynomal invariants of ¢,™

O=Dy+> A (P,T)Y () +ovvrrrren

T>T, : _ .

Lo * Thermodynamic equilibrium requires that all A are >0
above T.

* In order to have broken symmetry, one A has to change

sign at the transition.

D=0, +%a(T)(T—TC)772 +Cn*+.......

In a second order phase transition,
a single symmetry mode is involved.

—T T
-100 -50 0 50 100
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Outline

. Symmetry elements and operations
. Symmetry groups (molecules)

. Representation of a group
Irreducible representations (IR)
Decomposition into IRs

Projection

Space groups

NOYuUl S WIN —
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Inversion pointi ( )

Change coordinates of a point (x,y,z) to (-x,-y,-z)

@2 (XY, Z) ®




Mirror planes

o o
6. ¢.
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Proper rotation C, (n)

Rotation axis of order n
Fe(C.H), : : @
5-fold axis k
I& C (1<k<n-1)
Rotation of 2rk/n

c C C
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Improper rotation S, (n)

Combination of two successive operations:

1) Rotation C around an axis.
2) Mirror operation in a plane perpendicular to rotation axis

S, in tetrahedral geometry
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Group structure

Collection of elements for which an associative law
of combination is defined and such that for any
pair of elements g and h, the product gh is also
element of the collection

It contains a unitary element, E, such that gk=g
Every element g has an inverse, noted g’ such that
gg'=E.

The order of a group is simply the number of elements in a group.
We will note the order of a group h.
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Multiplication table

Four different operations:

*E

* o(x2)
* o(yz)
* C,(2)

E C,(2) | o(xz2) | olyz)

/.\ C,(2) | C,(2) |E slyz) | o(xz)
Z
g

o(xz) | o(xz) |o(yz) |E Cy(2)

o(yz) |olyz) |o(xz) |Cy(2) |E
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Classes

Similarity transform: }; = x_lgx

g and h are conjugate

The set of elements that are all conjugate to one another is called a (conjugacy) class.

s

C3
R

v2

Symmetry operations:

ECICZO' 0,,,0,;

vls 2 v2

N
o, Co, =C;

Top view
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Determination of G

Select
C, of highest n
nC,1C.?

Flow chart (Cotton)

nv|
S Science & Technology Facilities Council
- ISIS

Representation of G

A group G is represented in a vector space E, of dimension n,
if we form an homomorphism D from G to GL (E) :

Vge Gg— D(g € GL(E)
Vgg' € G D(gg)=D(gD(g)
D(1)=1

Vg e GDE')=(D@)
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Matrices

- If a basis of E is
chosen, then we C )
can write D(g) as n
by n matrices.

- We will note DaB(g) o
the matrix elements
(line a, row B) N S Y
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Character

The trace (sum of diagonal elements)
is noted .

x(©)=> D, (g

Important reminder :

D’=P-'DP

Matrices that are conjugate to one another
have the same trace.
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Example : H,O modes

A symmetry operation produces linear transformations in the vector space E.

& Science & Technology Facilities Council

Olz Olz

Hoy b Hiy
Hix) (1 0 0 0 0 0 0 0 0)HIx
Hiy'| |0 1 0 0 0 0 0 0 0]Hly
Hiz| [0 0 1 0 0 0 0 0 0|Hlz
H2x'| [0 0 0 1 0 0 0 0 0 H2x X(E)=9
H2y'|=[0 0 0 0 1 0 0 0 0| H2y
H2z'| [0 0 0 0 0 1 00 0|H2z
Olx| [0 000001 0 0fOIx
oly'| |0 0 000001 0]Oly
olz) L0 00000001
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Matrix multiplication

o(xz) * Cyz) - olyz)

1 0 00 0 00 O OO O O-1 0 0 O 0 O 0 0 0|-1 0 0|0 0O
0O-roo o o000 O0OfJo0 O O O -1 0 0 O0 O 0 000 1 0|0 00O
o 0 10 0 O0OO0O0OO0OIO O OO OT1T O O0 O 0 000 O T1]0 00O
oo o010 00 0 OfJ-1 0 0 0O 0 0 0 0 O -1 0 0{]0 0 0|0 0 O
oo o00-ro0oo o o0ofpo0 -1ro o o0O0OO O O=01O0(0 O0O0O(0 00O
0o 0o 00 01 00 0fJO0O 01 0 0 O0O0 0O 0 0110 0 0|0 00O
o0 00 0 01 0 O0OfJO0O 0O OO OO-1 00 0 000 O0O0O|-1 00
o 0o 00 0 00 -10jJO0O 0 OO OO0OO0O -10 0 000 O0O0O|O 10
o 0 060 0 OO O IAO O O O OO O O 1 0 0 0J]0 0 0[]0 01
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Irreducible representations (IRs)

D is a representation of a group in a space E.

D is reducible if it leaves at least one subspace of
E invariant, otherwise the representation is
irreducible.

Every element of E can be written in one and only one way
as a sum of elements of E,.
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IRS

- |n matrix terms:

A representation is reducible if one can
find a similarity transformation
(change of basis) that send all the
matrices D(g) to the same block-
diagonal form.

0

Properties of
block diagonal matrices

>_\D
O
N

ol | o) | o




IRS

- In a finite group, there is a limited
number of IRs.
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Character tables

- In a finite group, there is a limited number
of IRs.
- IRs are described in character tables:

A table that list the symmetry operations
hOFIZOntally, IRS |abE|S Vertlca”y ar@)njugacyclasses

corresponding character%

G| E (2C3><3Gv>




Great Orthogonality theorem

» For two given IRs D' and D, of dimension |; and |, respectively.

h
D! D’ ¥=—0.0 0
Z ,B(g) ,B(g) ﬁ ij - aa'” B

geC

M (7)) =h

geG

> 1(@x'(g)=0

geCG
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GOT

D is a reducible representation.

The number of times that a representation i appears in a decomposition is :

Zz, (&)* x(2) A,
h s Cs, | E |2C5| 30,
A, | ] ]
A, |1 ] -1
NA=1/6(3*1+2"1°0+3"171)=1 1. |E 2 -1 0
woeerzres e o [3 o |
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Projection

* Project a vector of the vector space into the space of the IR to find the
symmetry adapted vectors.

* indicates complex conjugate

)
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SIS

f(x)

Integrals

[ f s

)
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ISIS




Space group Symmetry
operations

Use the Seitz notation {alt_}
—o. rotational part (proper or improper)
— t, translational part

{alty} {Blrgt={aplats+t,}

Space group: infinite number of symmetry operations

P e e e

& Science & Technology Facilities Council

Group of translation T

T | {11000} {1100} {1|010} {1|z} {1] 200} ........

K | e'-i kt

-Infinite abelian group

-Infinite number of irreducible representations, and consists of the complex root
of unity.

Basis are Bloch functions.
O (ry=u,(r).e"
u,(r+t)y=u,(r) (¢ 1s a lattice translation)

{1] t}CDk(r) = CI)k(r —t)=u,(r —t).eik(r_t) = e_iktCI)k(r)

& Science & Technology Facilities Council




Space group

Consider a symmetry element g={h|t} and a Bloch-function @’:

" (r)=u, (r)e”
¢'=1{h|t3¢"(r)
uyg'={1]u} {h|t}¢"(r)
= {h| 3 {11 huig" (r)

— {h | t}e—ikh71u¢k (7") — e—ikhflu {h | t}¢k (7") — e—i(hk)u¢v
@'is a bloch function & (7)

() jgje

Little group G,

- By applying the rotational part of the symmetry
elements of the paramagnetic group, one founds a
set of k vectors, known as the “star of k”

- Two vectors k; and k, are equivalent if they equal
or related by a reciprocal lattice vector.

- In the general case, if all vectors k;, ks,...... k; in the
star are not equivalent, the functions @, are
linearly independent.

- The group generated from the point group
operations that leave k invariant elements +
translations is called the group of the propagation
vector k or little group and noted Gk

- In G, the functions ®,; are notz
independent, and the ks




IRs of G,

Tabulated (Kovalev tables) or calculable
for all space group and all k vectors for
finite sets of point group elements /

& Science & Technology Facilities Council

Despite the infinite number of
atomic positions in a crystal
symmetry elements in a space group

...a representation theory of space groups is feasible using Bloch
functions associated to k points of the reciprocal space. This means
that the group properties can be given by matrices of finite
dimensions for the

- Reducible (physical) representations can be constructed on the
space of the components of a set of generated points in the zero cell.
- Irreducible representations of the Group of vector k are
constructed from a finite set of elements of the zero-block.

Orthogonalization procedures explained previously can be
employed to construct symmetry adapted functions
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Symmetry analysis
Example 1

)

Science & Technology Facilities Council

ISIS

Space group P4mm, k=0,

Magnetic site 2c

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382-383.

Pdmm C,,

4mm Tetragonal
No. 99 Pdmm Patterson symmetry P4 /atmm
(oYe) ofe]
-0 o 0] oM
No) O+ o) O+
Q% Q@
[o]le] olle}
Ne) o) \ Ne) lor
(0 Q+ + O+
00 Qe
Origin on 4mm
Asymmetric unit 0<x<y; 0<y<y§ 0<z<1l; x<y
Symmetry operations
(11 (2) 2 0,0,z (3) 4 0,0,z (4 4- 0,0,z
(5)m x,0,z (6) m 0,y,z Ty m x&z (8)m xxz

(k)

Science & Technology Facilities Council
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Generators selected  (1): #(1,0,0): #(0,1,0); £(0,0,1): (2): (3): (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8§ ¢ | (1) x,vz (2) %5,z (3) ¥,x,2 no conditions
(5)x,7.z (6) w2 N5z

Special:
4 f .m. x40 X, 1.2 5X,2 55,2 no extra conditions
4 e .m. x,0.z 00,z 0,x,2 0%,z no extra conditions
4 d ..m XX, x5z Xz x5z no extra conditions
2 ¢ 2mm. 1,0,z 0,4,z el 2 h+k=2n
I b dmm 512 no extra conditions
I a 4mm 0,0,z no extra conditions

& Science & Technology Facilities Council

{11000}

27+ 2y
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12,/000}

27+
*— — - *
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14,1000}
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{4,7/000}

L
i

]X m]Z+

’
al

) i
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()|
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SIS

)|

cience & Technology Facilities Council

SIS




{m,,,|000}

1x

AlY

)
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ISIS

IRS

Irs/SO {1000}  {2_00z|000} {4+_00z|000} {4-_00z|000} {m_x0z|000} {m_0yz|000} {m_x-xz|000} {m_xxz|000}
T, 1 1 1 1 1 1 1
T, 1 1 1 1 -1 -1 -1 -1
T, 1 1 A -1 1 1 A -1
T, 1 1 -1 - -1 -1 1 1
T 1.0 4 0 0 i 0 0 - 0 - 0 i
0 1 0 -1 0 -i 0 1 4 0 i 0 i 0
x@) 6 -2

)
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Decomposition into IRs

77(F1):%(6x1—2><1+0><1+O><1—2><1—2><1+O><1+O><1)=O

77(F2):%(6x1—2x1+O><1+O><l—2x—1—2><—1+0><—1+0><—1)=1
77(F3):%(6><1—2><1+O><—1+O><—1—2><1—2><1+O><—1+0><—1):0
U(F4):%(6><1—2><1+O><—1+O><—1—2><—1—2><—1+O><1+O><1)=1

77(F5)=%(6x2—2><—2+0><O+0><0—2><0—2><O+0><0+0x0):2

F=T,®rI, ®2I,

& Science & Technology Facilities Council

Projection onto I,

Pllx>=1x>—|lx>+[2y>—|2y>+|lx>—|lx>—|2y>+|2y>=0
Plly>=1ly>—|ly>—|2x>+|2x>—|ly>+|1ly>—|2x>+|2x>=0
Pllz>=lz>+|1z>+[2z>+[2z>+|1lz>+|1z>+ |2z >+|2z>=4(]1z > +| 2z >)

Shubnikov notation P4Am’m’
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Projection onto I',

Pllx>=1x>—|1x>—|2y>+|2y>+|lx>—|lx>+|2y>—|2y>=0
Plly>=ly>—|ly>+2|x>-2|x>—|ly>+|ly>+|2x>—-|2x>=0
Pllz>=|1lz>+|1z>—|2z>—|2z>+|lz>+|1z>—|2z2>—|2z>=4(]1z > — |2z >)
22-
. -G .

e N\

Shubnikov notation P4’mm’

& Science & Technology Facilities Council

Projection onto I's

Projection using the (1,1) elements of the matrices
Pllx>=lx>+[1x>—i|2y>—i|2y>=2(]1x>—i| 2y >)(4)
Plly>=[1y>+|1y>+i|2x > +i| 2x >=2(| 1y > +i | 2x >)(¢,)
Pllz>=1z>—|1z>—i|2z>+i|2z>=0
P|2x>=2x>+[2x>—i|ly>—i|ly>=2(]2x > —i|ly >)(i¢,)
P2y >=2y>+|2y >+i|lx>+i|Ix >=2(| 2y > +i | 1x >)(=ig,)
Projection using the (2,2) elements of the matrices
Pllx>=2(|1x>+i| 2y >)(¢,)

P|ly>=2(1y>~i|2x>)(¢,)

The magnetic modes can be any linear combinations

of ¢, ¢, ¢, ¢,
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Symmetry analysis
Example 2

& Science & Technology Facilities Council

Space group P2,/m, k=(0,5,0) Magnetic site 4f

2 -
P21 /I’}’l Cgh 2/m Monoclinic
No. 11 P12 .IJ!’H | Patterson symmetry P12/m1
L

UNIQUE AXIS b

% §—

._‘1.9 .. " _—Tc——
/ [ |
§ ¢ $ — o §—
) [ .
—§—§ — . L2
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Generators selected (1)t #(1,0,0): ¢(0,1,0): #(0,0,1): (2): (3)

Positions

Multiplicity, Coordinates Reflection conditions

Wy ckoff letter,

Site symmetry General:

4 F 1 {1y xyz (2)Ey+5.2 (3 %7.2 (4) v 7+ 4,2 Ok0: k=2n
Special: as above, plus

2 e m v, bz T,2,Z no extra conditions

2 0d 1 Lot 1504 Bt E=2n

2 e 1 0,0,% 0,+.% Bl 2 k=12n

2 b 1 $.0,0 140 R k=1n

2 a 1 0,0,0 0,4,0 Bkl 2 k=2n

& Science & Technology Facilities Council
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Little Group G,

Operation of the point group on the propagation vector
- ldentity - k=(0,8,0)

2-fold axis - k=(0,5,0)

Inversion = -k=(0,-5,0)

Mirror = -k=(0,-5,0)

Only {11000} and {ZVIOVzO} belong to G,

4f sites are split into two orbits : (1,2) and (3,4) since
no operations of G, transform sites 'of the first orbit
into that of the second orbit

& ce & Technology Facilities Council

IRs of G,

Irs/SO  {1]000}  {2,]0%0}

l_‘z 1 _ elTCS

Perform representation analysis for the first orbit.
For identity, it is trivial.
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{2,10%:0}

- |1x> is transformed into -|2x>
- |Ty> is transformed into |2y>
- |1z> is transformed into -|2z>

& Science & Technology Facilities Council

Decomposition into IRs

n(r1)=%(6x1+oxe"”5)=3

n(r,) :%(6><1+0><—ei”5) =3
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Projection onto T,

+
P|lx>=1x> - |2x > /—
. 1
Plly>=ly>+e™™ |2y > T R T
Pllz>=|1z>—-e" |2z > / /

Science & Technology Facilities Council

Projection onto I,
o—

P|lx>=|1x > +e ™ | 2x >
Plly>=1y>—-"™|2y> 0§ ——9
P|lz>=1z>+e"™ |2z > / /

fal—

The same can be done for the second orbit

Science & Technology Facilities Council




Magnetic diffraction

L.C.Chapon

ISIS Facility, Rutherford Appleton
Laboratory, UK

Science & Technology Facilities Council

Outline

- Nuclear scattering

- Magnetic scattering using a non-polarized
nheutron beam

- Type of magnetic structures (FStudio)
- Instrumentation




Scattering cross sections

Incident flux ® of neutron of wavevector k.

Neutron is in the initial state A

After scattering the neutron wavevector is k’ and

the neutron is in the state A’ yA

Partial differential cross section:

d’c | Number of neutrons scattered per second
-l into a solid angle dQ and with final energy
dQdE'| between E’ and E’+dE’/(ddQdE") K

Differential cross section: y

dQ

do | Number of neutrons scattered per second

——| into a solid angle dQ/(®dQ)
dQ) X

& Science & Technology Facilities Council

Scattering cross sections

Incident neutron with wavevector k and state A
Scattered neutron with wavevector k' and state \’

In the Born approximation:

2

S(E,—E,+E—E"

2 ' 2
ToRCIEN o
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Elastic nuclear scattering

In the Born approximation, the scattered intensity is given by:

The interaction between the neutron and the atomic nucleus is represented
by the Fermi pseudo-potential, a scalar field.

do
dQ (¢} (e} (e} (6}

& Science & Technology Facilities Council

Elastic magnetic scattering
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Cross sections

In the magnetic case, we need to evaluate the matrix element :
<k'o'|V_ ko >

neutron

ﬂO lueré
A(R)=—
(R) 47 R?
B=curlA=Vx A4 .
ith electron

Hy
V=—u .B=-— 2u,——oc.Vx
M, Y- < Hp A ( R

o [SxR) 1 oo g
VX[S;z j: = J-qxs xg.e""dg

& Science & Technology Facilities Council

The magnetic structure we will consider must
have a moment distribution that can be
expanded in Fourier series.

m; = Z 5
{k}

Unit-cell magnetic structure factor:

M(&)=p>. f,(£)S,e™"
J

& Science & Technology Facilities Council




Magnetic interaction vector

Magnetic interaction vector:

O(K) = Kx M (K)x &

The intensity of a magnetic Bragg peak |I:

[ c|Q(%)- Q" (i)

Magnetic form factor

In the dipole approximation:

£(0) =< jo(0)> +(1 —é) < (0>

International Tables of Crystallography, Volume C,
ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513

http://neutron.ornl.gov/~zhelud/useful/formfac/index.html
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Notations

K scattering vector

M(%) Magnetic structure factor

Q( K= M(© | Magnetic interaction vector
4, magnetic dipole moment of the neutron

eh
Uy =—— (nuclear magneton)

2mp

y=1913
4, magnetic dipole moment of the electron

U = eh (Bohr magneton)
2m

e

& Science & Technology Facilities Council

Visualize magnetic structure
with FStudio

Laurent C. Chapon

ISIS Facility, Rutherford Appleton
Laboratory, UK

J. Rodriguez-Carvajal

ILL, France
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lons with Intrinsic magneti
moments

Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule;: maximum S/J

@"
e

m =g, dJ (rare earths)

Ni2* m =gs S (transition metals

What is a magnetic structure?

Paramagnetic state:
Snapshot of magnetic moment configuration

o a6 ®
?ﬂ%éﬂ»,(f
<Si>:O ;f\qgg‘&b\
o ¢

Ez‘j :_Jij Sz' 'Sj
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What is a magnetic structure?

Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration

=88, NORORORON
= \O\T\Q\ AU C}

B0 w w e w
Magnetic structure:\Q\ \O\ \Q\ \Q\ \O\

Quasi-static configuration of magneticans

Science & Technology Facilities Council

Types of magnetic structures

Ferro Antiferro
-+— Q> <@ — —O>

Very often magnetic structures are complex due to :

- competing exchange interactions (i.e. RKKY)

- geometrical frustration

- competition between exchange and single ion anisotropies

Science & Technology Facilities Council




Types of magnetic structures

Amplitude-modulated or Spin-Density Waves

—o=

“Longitudinal”

“Transverse” 4 ®

Cycloid

Lol
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Types of magnetic structures

Shubnikov magnetic groups, are limited
to:

- Commensurate magnetic structure.

- Real representation of dimension 1.

Conical
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Formalism of prop. Vector : Basics

Position of atom j in unit-cell | © © © © ©
is given by:
R,=R+r; where R, is a pure ® ® ® © ©

lattice translation
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Formalism of prop. Vector :

Basics
- . m, = ZSkj exp{—27ikR, }
JSP i 3
1%

R, =R,+r,=la+lb+Lc+xa+yb+z:c

Necessary condition for real m

S, =S,
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Formalism of prop. Vector : Basics

A magnetic structure is fully described by:
- Wave-vector(s) {k}.

- Fourier components Sy for each magnetic atom j and wave-vector k.
S, is a complex vector (6 components) !!!

- Phase for each magnetic atom j, @,
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Single propagation vector
k =(0,0,0)

—o=

@e### —0ob=

m, = %:Skj exp{—27zile} =S

* The magnetic structure may be described within the
crystallographic unit cell

* Magnetic symmetry: conventional crystallography plus
time reversal operator: crystallographic magnetic groups

ki
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Single propagation vector
k=1/2 H

— O == = g@—
—0p O —OP O—
— T ~Q— = =g(—

— o -— —C = <@0—

m, = %Skj exp{—27ikR,} =S, (-1)""

kj

REAL Fourier coefficients = magnetic moments
The magnetic symmetry may also be described using
crystallographic magnetic space groups
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Fourier coef. of sinusoidal structures

- k interior of the Brillouin zone (pair k, -k)

- Real S,, or imaginary component in the same direction
one

“O——0——<0— 40—

m, =S, ep(—2mkR, )+S,; ep(27mkR, )

1 . —or———0r ———0r —0>
S, = Emjujexp(—27n¢kj)

m, =mu, cos 277(kR, +4¢; ) T
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2 ISis

Fourier coefficients of helical structures

i v, ey
TP
L L L]
Kk interior of the Brillouin zone 1 * {1« VL%* o~ ﬁ P %ﬂ
- Real component of S, perpendicular to the imaginary

component

1 :
S, = 2[m u +zmv]VJ] exp(—2xig,; )

m, =m_u, cos 277(KR, + @ )+m, v, sin27(kR, + 4, )
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Centred cells!
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Laurent Chapory | % . ||
Juan Rodriguez-Carvajal —~:

Type of lattice P, C, I, F.....

{ /
LATTICE P Propagation vector(s)

_
K0.50.00.0

SYMM x,y,z }List of symmetry operators with associated magnetic
MSYM u,v,w,0.0 operator

MATOM Ce1 CE 0.00.00.0 <\Magnetic atom

SKP 112.00.00.00.00.00.00.0

} v\:ourier coefficients and phase
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